Advertisements
Advertisements
Question
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Solution
LHS = `(sin θ/cos θ + sin θ)/(sin θ/cos θ - sin θ)`
= `(sin θ (1/cos θ + 1))/(sin θ (1/cos θ - 1))`
= `(sec θ + 1)/(sec θ - 1)`
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
If sec θ = `25/7`, then find the value of tan θ.
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1