English

Prove that θcosec θ×1-cos2θ = 1 - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1

Sum

Solution

L.H.S = `"cosec"  θ xx sqrt(1 - cos^2theta)`

= `"cosec"  θ xx sqrt(sin^2theta)`   ......`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`

= cosec θ × sin θ

= 1     ......[∵ sin θ × cosec θ = 1]

= R.H.S

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.1 (B)

RELATED QUESTIONS

Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.


Prove the following trigonometric identities.

`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`


if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2  = 2`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`


If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


Prove the following identity :

sinθcotθ + sinθcosecθ = 1 + cosθ  


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


Prove the following:

`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×