English

P If Sin θ = 1 3 Then Find the Value of 2cot2 θ + 2. - Mathematics

Advertisements
Advertisements

Question

If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 

Sum

Solution

Given:  

`sin θ=1/3`

⇒ `1/ sinθ=3` 

⇒` cosec θ=3` 

We know that, 

`cosec^2θ-cot ^2θ=1` 

⇒`(3)^2-cot^2θ=1` 

⇒ `cot ^2 θ=9-1`  

Therefore, 

`2 cot ^2 θ+2=2xx8+2` 

          =`16+2` 

          = `18` 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.3 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.3 | Q 17 | Page 55

RELATED QUESTIONS

Prove the following trigonometric identity:

`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`


Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


Write the value of tan1° tan 2°   ........ tan 89° .


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Evaluate:
`(tan 65°)/(cot 25°)`


Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`


Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`


If 2sin2θ – cos2θ = 2, then find the value of θ.


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×