Advertisements
Advertisements
Question
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Solution
Given:
`sin θ=1/3`
⇒ `1/ sinθ=3`
⇒` cosec θ=3`
We know that,
`cosec^2θ-cot ^2θ=1`
⇒`(3)^2-cot^2θ=1`
⇒ `cot ^2 θ=9-1`
Therefore,
`2 cot ^2 θ+2=2xx8+2`
=`16+2`
= `18`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
Write the value of tan1° tan 2° ........ tan 89° .
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
If 2sin2θ – cos2θ = 2, then find the value of θ.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ