Advertisements
Advertisements
Question
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Solution
LHS = `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1)`
= `((cot "A" + "cosec A") - ("cosec"^2 "A" - cot^2 "A"))/(cot "A" - "cosec A" + 1)`
= `((cot "A" + "cosec A")("cosec A" + cot "A")("cosec A" - cot "A"))/(cot "A" - "cosec A" + 1)`
= `((cot "A" + "cosec A") [1 - "cosec A" - cot "A"])/(cot"A"-"cosec A"+1)`
= `((cot "A" + "cosec A") (1-"cosec A"+cot"A"))/(1-"cosec A"+cot"A")`
= cot A + cosec A
= `cos"A"/sin"A"+1/sin"A"=(cos"A"+1)/sin"A"`
= `(1+cos"A")/sin"A"`
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1