Advertisements
Advertisements
Question
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Solution 1
L.H.S = `(tan^2 theta)/(sec theta - 1)^2 `
`= (sec^2 theta - 1)/(sec theta - 1)^2`
`= ((sec theta - 1)(sec theta + 1))/(sec theta - 1)^2`
`= (sec theta + 1)/(sec theta - 1)`
`= (1/cos theta + 1)/(1/cos theta - 1)`
`= ((1 + cos theta)/cos theta)/((1 - cos theta)/cos theta)`
`= (1 + cos theta)/(1 - cos theta)`
= R.H.S
Solution 2
L.H.S = `(tan^2 θ)/(sec θ - 1)^2 `
= `(sin^2 θ/cos^2 θ)/(1/cos θ - 1)^2 .....( ∵ tan θ = sin θ /cos θ )`
= `(sin^2 θ/cos^2 θ)/((1/cos θ - 1)^2/(cos^2 θ)) ....( ∵ sec θ = 1/cos θ) `
= `(sin^2 θ)/( 1 - cos θ)^2 ....( ∵ sin^2 θ = 1 - cos^2 θ) `
= `( 1 - cos^2 θ)/( 1 - cos θ)^2`
= `( 1 - cos θ)( 1 + cos θ)/( 1 - cos θ)^2` ....( ∵ a2 - b2 = (a + b)(a - b))
= `( 1 + cos θ)/( 1 - cos θ)`
= RHS.
RELATED QUESTIONS
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Choose the correct alternative:
sec 60° = ?