Advertisements
Advertisements
प्रश्न
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
उत्तर १
L.H.S = `(tan^2 theta)/(sec theta - 1)^2 `
`= (sec^2 theta - 1)/(sec theta - 1)^2`
`= ((sec theta - 1)(sec theta + 1))/(sec theta - 1)^2`
`= (sec theta + 1)/(sec theta - 1)`
`= (1/cos theta + 1)/(1/cos theta - 1)`
`= ((1 + cos theta)/cos theta)/((1 - cos theta)/cos theta)`
`= (1 + cos theta)/(1 - cos theta)`
= R.H.S
उत्तर २
L.H.S = `(tan^2 θ)/(sec θ - 1)^2 `
= `(sin^2 θ/cos^2 θ)/(1/cos θ - 1)^2 .....( ∵ tan θ = sin θ /cos θ )`
= `(sin^2 θ/cos^2 θ)/((1/cos θ - 1)^2/(cos^2 θ)) ....( ∵ sec θ = 1/cos θ) `
= `(sin^2 θ)/( 1 - cos θ)^2 ....( ∵ sin^2 θ = 1 - cos^2 θ) `
= `( 1 - cos^2 θ)/( 1 - cos θ)^2`
= `( 1 - cos θ)( 1 + cos θ)/( 1 - cos θ)^2` ....( ∵ a2 - b2 = (a + b)(a - b))
= `( 1 + cos θ)/( 1 - cos θ)`
= RHS.
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2