Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
उत्तर
`(secθ - tanθ)^2`
= `(1/cosθ - sinθ/cosθ)^2`
= `((1 - sinθ)/cosθ)^2 = (1 - sinθ)^2/cos^2θ`
= `(1 - sinθ)^2/(1 - sin^2θ) = (1 - sinθ)^2/((1 -sinθ)(1 + sinθ))` (∵ `1 - sin^2θ = cos^2θ`
= `(1 - sinθ)/(1 + sinθ)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.