Advertisements
Advertisements
प्रश्न
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
उत्तर
secθ + tanθ = `1/cosθ + sintheta/cosθ`
`=(1+sintheta)/costheta`
`=((1+sintheta)(1-sintheta))/(costheta (1-sintheta))`
`=(1^2 - sin^2theta)/(costheta(1-sintheta))`
`=cos^2theta/(costheta(1-sintheta))`
`therefore sectheta +tantheta =costheta/(1-sintheta)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
Write the value of tan1° tan 2° ........ tan 89° .
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
(sec θ + tan θ) . (sec θ – tan θ) = ?
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`