Advertisements
Advertisements
प्रश्न
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
उत्तर
secθ + tanθ = `1/cosθ + sintheta/cosθ`
`=(1+sintheta)/costheta`
`=((1+sintheta)(1-sintheta))/(costheta (1-sintheta))`
`=(1^2 - sin^2theta)/(costheta(1-sintheta))`
`=cos^2theta/(costheta(1-sintheta))`
`therefore sectheta +tantheta =costheta/(1-sintheta)`
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A = ______.
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
The value of sin2 29° + sin2 61° is
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.
(1 + sin A)(1 – sin A) is equal to ______.