हिंदी

Prove that Secθ + Tanθ = Cos θ 1 − Sin θ . - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.

उत्तर

secθ + tanθ = `1/cosθ + sintheta/cosθ`
                    `=(1+sintheta)/costheta`

                   `=((1+sintheta)(1-sintheta))/(costheta (1-sintheta))`

                 `=(1^2 - sin^2theta)/(costheta(1-sintheta))`

                 `=cos^2theta/(costheta(1-sintheta))`

  `therefore sectheta +tantheta =costheta/(1-sintheta)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) Balbharati Model Question Paper Set 3

संबंधित प्रश्न

9 sec2 A − 9 tan2 A = ______.


Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`


Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A


Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


The value of sin2 29° + sin2 61° is


Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


(1 + sin A)(1 – sin A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×