Advertisements
Advertisements
प्रश्न
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
उत्तर
LHS = `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ`
= `(sin^4θ + cos^4θ)/(sin^2θ.cos^2θ)`
= `((sin^2 θ + cos^2 θ)^2 - 2(sin^2 θ. cos^2 θ))/(sin^2 θ.cos^2 θ)`
= `((1)^2 - 2sin^2θ. cos^2 θ)/(sin^2 θ.cos^2 θ)`
= `1/(sin^2 θ.cos^2 θ) - (2sin^2θ. cos^2 θ)/(sin^2 θ.cos^2 θ)`
= `1/(sin^2 θ.cos^2 θ) - 2`
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
Write the value of tan1° tan 2° ........ tan 89° .
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`