हिंदी

Prove That Sin^2 θ/ Cos^2 θ + Cos^2 θ/Sin^2 θ = 1/(Sin^2 θ. Cos^2 θ) - 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.

योग

उत्तर

LHS = `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ`

= `(sin^4θ + cos^4θ)/(sin^2θ.cos^2θ)`

= `((sin^2 θ + cos^2 θ)^2 - 2(sin^2 θ. cos^2 θ))/(sin^2 θ.cos^2 θ)`

= `((1)^2 - 2sin^2θ. cos^2 θ)/(sin^2 θ.cos^2 θ)`

=  `1/(sin^2 θ.cos^2 θ) - (2sin^2θ. cos^2 θ)/(sin^2 θ.cos^2 θ)`

= `1/(sin^2 θ.cos^2 θ) - 2`

= RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
अध्याय 18 Trigonometry
Exercise 2 | Q 45
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×