Advertisements
Advertisements
Question
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Solution
LHS = `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ`
= `(sin^4θ + cos^4θ)/(sin^2θ.cos^2θ)`
= `((sin^2 θ + cos^2 θ)^2 - 2(sin^2 θ. cos^2 θ))/(sin^2 θ.cos^2 θ)`
= `((1)^2 - 2sin^2θ. cos^2 θ)/(sin^2 θ.cos^2 θ)`
= `1/(sin^2 θ.cos^2 θ) - (2sin^2θ. cos^2 θ)/(sin^2 θ.cos^2 θ)`
= `1/(sin^2 θ.cos^2 θ) - 2`
= RHS
APPEARS IN
RELATED QUESTIONS
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Choose the correct alternative:
1 + tan2 θ = ?
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`