Advertisements
Advertisements
Question
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Solution
L.H.S. = `(sintheta - 2sin^3theta)/(2cos^3theta - costheta)`
= `(sintheta(1 - 2sin^2theta))/(costheta(2cos^2theta - 1))`
= `(sintheta(1 - 2sin^2theta))/(costheta[2(1 - sin^2theta) - 1])`
= `(sintheta(1 - 2sin^2theta))/(costheta(2 - 2sin^2theta - 1))`
= `(sintheta(1 - 2sin^2theta))/(costheta(1 - 2sin^2theta))`
= `sintheta/costheta`
= tan θ = R.H.S.
APPEARS IN
RELATED QUESTIONS
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`(1 + cot^2 theta ) sin^2 theta =1`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.