English

Prove the following identities: sinθ-2sin3θ2cos3θ-cosθ=tanθ - Mathematics

Advertisements
Advertisements

Question

Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`

Sum

Solution

L.H.S. = `(sintheta - 2sin^3theta)/(2cos^3theta - costheta)`

= `(sintheta(1 - 2sin^2theta))/(costheta(2cos^2theta - 1))`

= `(sintheta(1 - 2sin^2theta))/(costheta[2(1 - sin^2theta) - 1])`

= `(sintheta(1 - 2sin^2theta))/(costheta(2 - 2sin^2theta - 1))`

= `(sintheta(1 - 2sin^2theta))/(costheta(1 - 2sin^2theta))`

= `sintheta/costheta`

= tan θ = R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometrical Identities - Exercise 21 (A) [Page 325]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 21 Trigonometrical Identities
Exercise 21 (A) | Q 34 | Page 325
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×