Advertisements
Advertisements
Question
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Solution
L.H.S. = `tan^2A - tan^2B`
= `sin^2A/cos^2A - sin^2B/cos^2B`
= `(sin^2A * cos^2B - sin^2B * cos^2A)/(cos^2A * cos^2B`
= `(sin^2A(1 - sin^2B)-sin^2B(1 - sin^2A))/(cos^2A * cos^2B)`
= `(sin^2A - sin^2A * sin^2B - sin^2B + sin^2A * sin^2B)/(cos^2A * cos^2B`
= `(sin^2A - cancel(sin^2A * sin^2B) - sin^2B + cancel(sin^2A * sin^2B))/(cos^2A * cos^2B`
= `(sin^2A - sin^2B)/(cos^2A * cos^2B)` = R.H.S.
APPEARS IN
RELATED QUESTIONS
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
From the figure find the value of sinθ.
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
tan θ × `sqrt(1 - sin^2 θ)` is equal to: