English

Prove the following identities: tan2A-tan2B=sin2A-sin2Bcos2A⋅cos2B - Mathematics

Advertisements
Advertisements

Question

Prove the following identities:

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`

Sum

Solution

L.H.S. = `tan^2A - tan^2B`

= `sin^2A/cos^2A - sin^2B/cos^2B`

= `(sin^2A * cos^2B - sin^2B * cos^2A)/(cos^2A * cos^2B`

= `(sin^2A(1 - sin^2B)-sin^2B(1 - sin^2A))/(cos^2A * cos^2B)`

= `(sin^2A - sin^2A * sin^2B - sin^2B + sin^2A * sin^2B)/(cos^2A * cos^2B`

= `(sin^2A - cancel(sin^2A * sin^2B) - sin^2B + cancel(sin^2A * sin^2B))/(cos^2A * cos^2B`

= `(sin^2A - sin^2B)/(cos^2A * cos^2B)` = R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometrical Identities - Exercise 21 (A) [Page 325]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 21 Trigonometrical Identities
Exercise 21 (A) | Q 33 | Page 325
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×