Advertisements
Advertisements
प्रश्न
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
उत्तर
L.H.S. = `tan^2A - tan^2B`
= `sin^2A/cos^2A - sin^2B/cos^2B`
= `(sin^2A * cos^2B - sin^2B * cos^2A)/(cos^2A * cos^2B`
= `(sin^2A(1 - sin^2B)-sin^2B(1 - sin^2A))/(cos^2A * cos^2B)`
= `(sin^2A - sin^2A * sin^2B - sin^2B + sin^2A * sin^2B)/(cos^2A * cos^2B`
= `(sin^2A - cancel(sin^2A * sin^2B) - sin^2B + cancel(sin^2A * sin^2B))/(cos^2A * cos^2B`
= `(sin^2A - sin^2B)/(cos^2A * cos^2B)` = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Evaluate:
`(tan 65°)/(cot 25°)`
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove that sec2θ − cos2θ = tan2θ + sin2θ
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`