Advertisements
Advertisements
प्रश्न
Evaluate:
`(tan 65°)/(cot 25°)`
उत्तर
`(tan 65°)/(cot 25°)`
= `(tan 90° - 25°)/(cot 25°)` ...(∵ tan(90°−θ) = cotθ )
= `( cot 25° )/( cot 25°)`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
If tan θ × A = sin θ, then A = ?
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.