Advertisements
Advertisements
प्रश्न
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
उत्तर १
(cosθ + sinθ)2 = (`sqrt2`. cosθ)2
cos2θ + sin2θ + 2.cosθ.sinθ = 2cos2θ
1 + 2.cosθ.sinθ = 2cos2θ
2.cosθ.sinθ = 2cos2θ − 1
(cosθ.sinθ)2 = cos2θ + sin2θ − 2.cosθ.sinθ
= 1 − (2.cos2θ − 1)
= 1 − 2.cos2θ +1
= 2 − 2.cos2θ
= 2(1 − cos2θ)
cosθ − sinθ = `sqrt(2sin^2θ)`
= `sqrt2`sinθ
Hence proved
उत्तर २
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.