Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
उत्तर
L.H.S. = `(cosecA-1)/(cosecA+1)`
= `(cosecA - 1)/(cosecA + 1) xx (cosecA + 1)/(cosecA + 1)`
= `(cosec^2A - 1)/(cosecA + 1)^2`
= `cot^2A/(cosecA + 1)^2`
= `(cos^2A/sin^2A)/(1/sinA + 1)^2`
= `(cosA/(1 + sinA))^2` = R.HS.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`