Advertisements
Advertisements
प्रश्न
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
पर्याय
a2 – b2
b2 – a2
a2 + b2
b – a
उत्तर
b2 – a2
Explanation;
(a cot θ + b cosec θ)2 = p2
(b cot θ + a cosec θ)2 = q2
p2 – q2 = a2 cot2θ + a2 cot2θ + 2ab cot θ cosec θ – (b2 cot2θ + a2 cosec2θ + 2ab cot θ cosec θ)
= (a2 – b2) cot2θ + (b2 – a2) cosec2θ
= (a2 – b2) (cosec2θ – 1) + (b2 – a2) (cosec2θ)
= (a2 – b2) cosec2θ – (a2 – b2) – (a2 – b2) cosec2θ
= b2 – a2
APPEARS IN
संबंधित प्रश्न
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.