Advertisements
Advertisements
प्रश्न
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
उत्तर
L.H.S. = `1/(sinA + cosA) + 1/(sinA - cosA)`
= `(sinA - cosA + sinA + cosA)/((sinA + cosA)(sinA - cosA))`
= `(2sinA)/(sin^2A - cos^2A)`
= `(2sinA)/(1 - cos^2A - cos^2A)` ...(∵ sin2A = 1 – cos2A)
= `(2sinA)/(1 - 2cos^2A)` = R.H.S.
APPEARS IN
संबंधित प्रश्न
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Prove that cot2θ × sec2θ = cot2θ + 1
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`