Advertisements
Advertisements
प्रश्न
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
उत्तर
Given that α is in quadrant IV, where x is positive and y is negative.
`sec alpha=r/x=2/sqrt3`
`Let r=2k, `
`r^2=x^2+y^2`
`therefore(2k^2)=(sqrt(3k))^2+y^2`
`therefore y^2=4k^2-3k^2=k^2`
`therefore y=+-k`
`cosec alpha =r/y=(2k)/-k=-2`
Substituting the value of cosec ,we get
`(1-cosec alpha)/(1+cosec alpha)=(1-(-2))/(1+(-2))=(1+2)/(1-2)=3/-1 `
`(1-cosec alpha)/(1+cosec alpha)=-3`
APPEARS IN
संबंधित प्रश्न
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
Write the value of cosec2 (90° − θ) − tan2 θ.
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Choose the correct alternative:
tan (90 – θ) = ?
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1