मराठी

`(1+ Tan^2 Theta)/(1+ Tan^2 Theta)= (Cos^2 Theta - Sin^2 Theta)` - Mathematics

Advertisements
Advertisements

प्रश्न

`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`

उत्तर

LHS = `(1- tan^2 theta)/(1+ tan^2 theta)`

      =`(1-(sin^2 theta)/(cos^2 theta))/(1+(sin^2 theta)/(cos^2 theta))`

      =`(cos^2 theta- sin^2 theta)/(cos^2 theta+ sin ^2 theta)`

     =`(cos^2 theta+sin^2 theta)/1`

    =`cos^2 theta- sin^2 theta`

    = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 18.1

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


Prove the following trigonometric identities

`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`


Prove the following identity :

tanA+cotA=secAcosecA 


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)


Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×