मराठी

Prove the Following Trigonometric Identities. (1 + Cos Theta - Sin^2 Theta)/(Sin Theta (1 + Cos Theta)) = Cot Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`

उत्तर

In the given question, we need to prove `(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`

Using the property  `sin^2 theta + cot^2 theta = 1` we get

So

`(1 + cos theta - sin^2 theta)/(sin theta (1 +  cos theta))`

`= (1 + cos theta - (1 - cos^2 theta))/(sin theta (1 + cos theta)`

`= (cos theta + cos^2 theta)/(sin theta (1 + cos theta))`

Solving further, we get

`(cos theta + cos^2 theta)/(sin(1 + cos theta)) = (cos theta (1 + cos theta))/(sin theta(1 + cos theta))`

`= cos theta/sin theta`

`= cot theta`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 53 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.


`(1+tan^2A)/(1+cot^2A)` = ______.


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


If 2sin2θ – cos2θ = 2, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×