Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
उत्तर
In the given question, we need to prove `(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Using the property `sin^2 theta + cot^2 theta = 1` we get
So
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta))`
`= (1 + cos theta - (1 - cos^2 theta))/(sin theta (1 + cos theta)`
`= (cos theta + cos^2 theta)/(sin theta (1 + cos theta))`
Solving further, we get
`(cos theta + cos^2 theta)/(sin(1 + cos theta)) = (cos theta (1 + cos theta))/(sin theta(1 + cos theta))`
`= cos theta/sin theta`
`= cot theta`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
If 2sin2θ – cos2θ = 2, then find the value of θ.