Advertisements
Advertisements
प्रश्न
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
उत्तर
L.H.S. = `sqrt((1 + sin theta)/(1 - sin theta)`
= `sqrt(((1 + sin theta)(1 + sin theta))/((1 - sin theta)(1 + sin theta))` ...[conjugate (1 − sin θ)]
= `sqrt((1 + sin theta)^2/(1 - sin^2 theta)`
= `sqrt((1 + sin theta)^2/(cos^2 theta)`
= `(1 + sin theta)/(cos theta)`
= `1/cos theta + sin theta/cos theta`
= sec θ + tan θ
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
From the figure find the value of sinθ.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`