Advertisements
Advertisements
प्रश्न
From the figure find the value of sinθ.
उत्तर
`sinθ = ("AB")/("AC")`
`sinθ = 3/5`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
`sin^2 theta + 1/((1+tan^2 theta))=1`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ