Advertisements
Advertisements
प्रश्न
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
पर्याय
a2 b2
ab
a4 b4
a2 + b2
उत्तर
Given:
`x= a cosθ, y= b sin θ`
So,
`b^2 x^2+a^2 y^2`
= `b^2(a cos)^2+a^2(b sin θ)^2`
=` b^2 a^2 cos^2θ+a^2 b^2 sin^2θ`
=`b^2a^2 (cos^2 θ+sin^2θ)`
We know that,
`sin^2θ+cos^2θ=1`
Therefore,` b^2x^2+a^2y^2=a^2b^2`
APPEARS IN
संबंधित प्रश्न
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
`(1-cos^2theta) sec^2 theta = tan^2 theta`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1