मराठी

Prove the following identities, where the angles involved are acute angles for which the expressions are defined: 1+secAsecA=sin2A1-cosA [Hint : Simplify LHS and RHS separately.] - Mathematics

Advertisements
Advertisements

प्रश्न

 
 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)` 

[Hint : Simplify LHS and RHS separately.]

 
 
बेरीज

उत्तर

 

 L.H.S

`(1+secA)/secA = (1+1/(cosA))/(1/cosA)`

= `((cosA+1)/cosA)/(1/cosA)`

= `(cosA+1)`

= `((1-cosA)(1+cosA))/(1-cosA)`

= `(1-cos^2A)/(1-cosA)`

= `(sin^2A)/(1-cosA)`           ...[∵ 1cos2 A = sin2A]

R.H.S

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.4 | Q 5.04 | पृष्ठ १९४

संबंधित प्रश्‍न

Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`


Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`


Prove the following trigonometric identities

`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`


Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


Show that : tan 10° tan 15° tan 75° tan 80° = 1


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


(i)` (1-cos^2 theta )cosec^2theta = 1`


`(1 + cot^2 theta ) sin^2 theta =1`


`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`


`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.


If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`


Write the value of tan1° tan 2°   ........ tan 89° .


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Prove that:

tan (55° + x) = cot (35° – x)


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.


If 2sin2θ – cos2θ = 2, then find the value of θ.


Eliminate θ if x = r cosθ and y = r sinθ.


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×