Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
рдЙрддреНрддрд░
We have `(cosec theta + cot theta ) = m ............(i)`
Again ,`( cosec theta - cot theta )=n ............(ii)`
ЁЭСБЁЭСЬЁЭСд, ЁЭСЪЁЭСвЁЭСЩЁЭСбЁЭСЦЁЭСЭЁЭСЩЁЭСжЁЭСЦЁЭСЫЁЭСФ (ЁЭСЦ)ЁЭСОЁЭСЫЁЭСС (ЁЭСЦЁЭСЦ), ЁЭСдЁЭСТ ЁЭСФЁЭСТЁЭСб:
`(cosec theta + cot theta ) xx ( cosec theta - cot theta ) = mn`
= >`cosec ^2 theta - cot^2 theta =mn`
= >1= mn `[тИ╡ cosec ^2 theta - cot^2 theta =1]`
∴ mn =1
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
If cosA + cos2A = 1, then sin2A + sin4A = 1.