рдорд░рд╛рдареА

If `( Cosec Theta + Cot Theta ) =M and ( Cosec Theta - Cot Theta ) = N, ` Show that Mn = 1. - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.

рдЙрддреНрддрд░

We have `(cosec  theta + cot theta ) = m      ............(i)`

Again ,`( cosec theta - cot theta )=n                 ............(ii)`

ЁЭСБЁЭСЬЁЭСд, ЁЭСЪЁЭСвЁЭСЩЁЭСбЁЭСЦЁЭСЭЁЭСЩЁЭСжЁЭСЦЁЭСЫЁЭСФ (ЁЭСЦ)ЁЭСОЁЭСЫЁЭСС (ЁЭСЦЁЭСЦ), ЁЭСдЁЭСТ ЁЭСФЁЭСТЁЭСб:

`(cosec theta + cot theta ) xx ( cosec theta - cot theta ) = mn`

= >`cosec  ^2 theta - cot^2  theta =mn`

= >1= mn     `[тИ╡ cosec ^2 theta - cot^2 theta =1]`

∴  mn =1

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 8: Trigonometric Identities - Exercises 2

APPEARS IN

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди

Prove the following trigonometric identities.

`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Show that : tan 10° tan 15° tan 75° tan 80° = 1


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


Prove that:

(cosec A – sin A) (sec A – cos A) sec2 A = tan A


If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`


Write the value of `(1 + tan^2 theta ) cos^2 theta`. 


Prove the following identity :

`1/(tanA + cotA) = sinAcosA`


Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Evaluate:

`(tan 65^circ)/(cot 25^circ)`


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove that:  `1/(sec θ - tan θ) = sec θ + tan θ`.


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


If cosA + cos2A = 1, then sin2A + sin4A = 1.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×