Advertisements
Advertisements
प्रश्न
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
उत्तर
LHS = `1/(sec θ - tan θ)`
= `1/((1/cos θ) - (sin θ/cos θ))`
= `(cos θ xx (1 + sin θ))/((1 - sin θ) xx ( 1 + sin θ))`
= `(cos θ( 1 + sin θ))/(1 - sin^2 θ)`
= `(cos θ( 1 + sin θ))/(cos^2 θ)`
= `1/cos θ + sin θ/cos θ`
= sec θ + tan θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Find the value of ( sin2 33° + sin2 57°).
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.