मराठी

If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.

पर्याय

  • 1

  • `3/4`

  • `1/2`

  • `1/4`

MCQ
रिकाम्या जागा भरा

उत्तर १

If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is `underlinebb(1/2)`.

Explanation:

Given,

sin θ – cos θ = 0

⇒ sin θ = cos θ

⇒ `sintheta/costheta` = 1

⇒ tan θ = 1   ...`[∵ tan theta = sintheta/costheta  "and"  tan 45^circ = 1]`

⇒ tan θ = tan 45°

∴ θ = 45°

Now, sin4θ + cos4θ = sin445° + cos445°

= `(1/sqrt(2))^4 + (1/sqrt(2))^4`    ...`[∵ sin 45^circ = cos 45^circ = 1/sqrt(2)]`

= `1/4 + 1/4`

= `2/4`

= `1/2`

shaalaa.com

उत्तर २

LHS =`sin theta / ((1+costheta))+((1+costheta))/sin theta`

       =`(sin^2 theta +(1 +cos theta)^2)/((1+cos theta)sin theta)`

       =`(sin ^2 theta +1+cos^2theta+2costheta)/((1+cos theta)sintheta)`

       =`(1+1+2 cos theta)/((1+cos theta )sin theta)`

      =`(2+2 cos theta)/((1+cos theta )sintheta)`

       =`(2(1 + cos theta))/((1+ cos theta)sin theta)`

        =`2/sin theta`

        =`2 cosec  theta` 

       = RHS
    Hence, L.H.S = R.H.S.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [पृष्ठ ९१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 13 | पृष्ठ ९१
आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 11

संबंधित प्रश्‍न

Prove the following trigonometric identities:

`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `


If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove the following trigonometric identities.

`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


If `cosec  theta = 2x and cot theta = 2/x ," find the value of"  2 ( x^2 - 1/ (x^2))`


If sec θ + tan θ = x, then sec θ =


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


If cosθ = `5/13`, then find sinθ. 


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


Choose the correct alternative:

1 + cot2θ = ? 


If tan α + cot α = 2, then tan20α + cot20α = ______.


Prove the following:

`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×