Advertisements
Advertisements
प्रश्न
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
पर्याय
1
`3/4`
`1/2`
`1/4`
उत्तर १
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is `underlinebb(1/2)`.
Explanation:
Given,
sin θ – cos θ = 0
⇒ sin θ = cos θ
⇒ `sintheta/costheta` = 1
⇒ tan θ = 1 ...`[∵ tan theta = sintheta/costheta "and" tan 45^circ = 1]`
⇒ tan θ = tan 45°
∴ θ = 45°
Now, sin4θ + cos4θ = sin445° + cos445°
= `(1/sqrt(2))^4 + (1/sqrt(2))^4` ...`[∵ sin 45^circ = cos 45^circ = 1/sqrt(2)]`
= `1/4 + 1/4`
= `2/4`
= `1/2`
उत्तर २
LHS =`sin theta / ((1+costheta))+((1+costheta))/sin theta`
=`(sin^2 theta +(1 +cos theta)^2)/((1+cos theta)sin theta)`
=`(sin ^2 theta +1+cos^2theta+2costheta)/((1+cos theta)sintheta)`
=`(1+1+2 cos theta)/((1+cos theta )sin theta)`
=`(2+2 cos theta)/((1+cos theta )sintheta)`
=`(2(1 + cos theta))/((1+ cos theta)sin theta)`
=`2/sin theta`
=`2 cosec theta`
= RHS
Hence, L.H.S = R.H.S.
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
If sec θ + tan θ = x, then sec θ =
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If cosθ = `5/13`, then find sinθ.
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Choose the correct alternative:
1 + cot2θ = ?
If tan α + cot α = 2, then tan20α + cot20α = ______.
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ