Advertisements
Advertisements
प्रश्न
If sec θ + tan θ = x, then sec θ =
पर्याय
\[\frac{x^2 + 1}{x}\]
\[\frac{x^2 + 1}{2x}\]
\[\frac{x^2 - 1}{2x}\]
\[\frac{x^2 - 1}{x}\]
उत्तर
Given: `sec θ+tan θ=1`
We know that,
`sec^2θ-tan^2θ=1`
⇒ `(secθ+tan θ)(secθ-tan θ)=1`
⇒`x(sec θ-tan θ)=1`
⇒ `secθ-tan θ=1/x`
Now,
`sec θ+tan =x`
`sec θ-tan θ=1/x`
Adding the two equations, we get
`(sec θ+tan θ)+(sec θ-tan θ)=x+1/x`
⇒` sec θ+tan θ+sec θ-tan θ=(x^2+1)/x`
⇒ `2 sec θ=(x^2+1)/x`
⇒` sec θ=(x^2+1)/(2x)`
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Evaluate sin25° cos65° + cos25° sin65°
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Find the value of sin 30° + cos 60°.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
Choose the correct alternative:
sec2θ – tan2θ =?
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.