मराठी

If Sec θ + Tan θ = X, Then Sec θ = - Mathematics

Advertisements
Advertisements

प्रश्न

If sec θ + tan θ = x, then sec θ =

पर्याय

  • \[\frac{x^2 + 1}{x}\]

  • \[\frac{x^2 + 1}{2x}\]

  • \[\frac{x^2 - 1}{2x}\]

  • \[\frac{x^2 - 1}{x}\]

MCQ

उत्तर

Given:  `sec θ+tan θ=1` 

We know that, 

`sec^2θ-tan^2θ=1` 

⇒ `(secθ+tan θ)(secθ-tan θ)=1` 

⇒`x(sec θ-tan θ)=1` 

⇒ `secθ-tan θ=1/x` 

Now, 

`sec θ+tan =x` 

`sec θ-tan θ=1/x` 

Adding the two equations, we get 

`(sec θ+tan θ)+(sec θ-tan θ)=x+1/x` 

⇒` sec θ+tan θ+sec θ-tan θ=(x^2+1)/x` 

⇒ `2 sec θ=(x^2+1)/x` 

⇒` sec θ=(x^2+1)/(2x)` 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 1 | पृष्ठ ५६

संबंधित प्रश्‍न

If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`


 Evaluate sin25° cos65° + cos25° sin65°


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)

Show that one of the values of each member of this equality is sin α sin β sin γ


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`


`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity : 

`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`


Find the value of sin 30° + cos 60°.


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


Choose the correct alternative:

sec2θ – tan2θ =?


Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B


If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×