Advertisements
Advertisements
प्रश्न
If sec θ + tan θ = x, then sec θ =
विकल्प
\[\frac{x^2 + 1}{x}\]
\[\frac{x^2 + 1}{2x}\]
\[\frac{x^2 - 1}{2x}\]
\[\frac{x^2 - 1}{x}\]
उत्तर
Given: `sec θ+tan θ=1`
We know that,
`sec^2θ-tan^2θ=1`
⇒ `(secθ+tan θ)(secθ-tan θ)=1`
⇒`x(sec θ-tan θ)=1`
⇒ `secθ-tan θ=1/x`
Now,
`sec θ+tan =x`
`sec θ-tan θ=1/x`
Adding the two equations, we get
`(sec θ+tan θ)+(sec θ-tan θ)=x+1/x`
⇒` sec θ+tan θ+sec θ-tan θ=(x^2+1)/x`
⇒ `2 sec θ=(x^2+1)/x`
⇒` sec θ=(x^2+1)/(2x)`
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
If cos A + cos2 A = 1, then sin2 A + sin4 A =
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1