Advertisements
Advertisements
प्रश्न
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
उत्तर
We Know , `(sinA + cosA)^2 = sin^2A + cos^2A + 2sinA.cosA`
Given , (sinA + cosA) = `sqrt(2)`
⇒ 2 = 1 + 2sinA.cosA
⇒ 2sinA.cosA = 1
⇒ sinA.cosA = `1/2`
APPEARS IN
संबंधित प्रश्न
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
What is the value of 9cot2 θ − 9cosec2 θ?
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.