Advertisements
Advertisements
Question
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Solution
We Know , `(sinA + cosA)^2 = sin^2A + cos^2A + 2sinA.cosA`
Given , (sinA + cosA) = `sqrt(2)`
⇒ 2 = 1 + 2sinA.cosA
⇒ 2sinA.cosA = 1
⇒ sinA.cosA = `1/2`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
`(1 + cot^2 theta ) sin^2 theta =1`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ