Advertisements
Advertisements
Question
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Solution 1
L.H.S. = `1/(secA + tanA)`
= `1/(1/cosA + sinA/cosA)`
= `1/((1 + sinA)/cosA)`
= `cosA/(1 + sinA) xx (1 - sinA)/(1 + sinA)`
= `(cosA(1 - sinA))/((1)^2 - sin^2A)`
= `(cosA(1 - sinA))/cos^2A`
= `1/cosA - sinA/cosA`
= sec A – tan A
L.H.S. = R.H.S.
Hence proved.
Solution 2
L.H.S = `1/(secA + tanA)`
= `((secA - tanA))/((secA + tanA)(secA - tanA))` ...((Multiply Num. and Deno. by sec A – tan A)
= `(secA - tanA)/(sec^2A - tan^2A)`
= `(secA - tanA)/1` ...[∵ sec2 A – tan2 A = 1]
= sec A – tan A
= R.H.S.
APPEARS IN
RELATED QUESTIONS
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Choose the correct alternative:
1 + cot2θ = ?