Advertisements
Advertisements
Question
`(1-cos^2theta) sec^2 theta = tan^2 theta`
Solution
LHS = `(1-cos^2 theta)sec^2 theta`
=`sin^2 theta xx sec^2 theta (∵ sin^2 theta + cos^2 theta = 1)`
= `sin^2 theta xx 1/(cos^2 theta)`
=`(sin^2 theta)/(cos^2 theta)`
=`tan^2 theta`
=RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`(sec^2 theta-1) cot ^2 theta=1`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
If sec θ = `25/7`, then find the value of tan θ.
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`