English

Prove the Following Identity : Sin 8 θ − Cos 8 θ = ( Sin 2 θ − Cos 2 θ ) ( 1 − 2 Sin 2 θ Cos 2 θ ) - Mathematics

Advertisements
Advertisements

Question

Prove the following identity : 

`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`

Sum

Solution

LHS = `sin^8θ - cos^8θ`

 = `(sin^4θ)^2 - (cos^4θ)^2`

= `(sin^4θ - cos^4θ)(sin^4θ + cos^4θ)`

= `(sin^2θ - cos^2θ)(sin^2θ + cos^2θ)(sin^4θ + cos^4θ)`

= `(sin^2θ - cos^2θ)(sin^4θ + cos^4θ)`

= `(sin^2θ - cos^2θ)((sin^2θ)^2 + (cos^2θ)^2 + 2sin^2θcos^2θ - 2sin^2θcos^2θ)`

= `(sin^2θ - cos^2θ)((sin^2θ + cos^2θ)^2 - 2sin^2θcos^2θ)`

= `(sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometric Identities - Exercise 21.1

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 21 Trigonometric Identities
Exercise 21.1 | Q 6.07
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×