Advertisements
Advertisements
Question
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Solution 1
`cotA/(1 - tanA) + tanA/(1 - cotA)`
= `(1/tanA)/(1 - tanA) + tanA/(1 - 1/tanA)`
= `1/(tanA(1 - tanA)) + tan^2A/(tanA - 1)`
= `(1 - tan^3A)/(tanA(1 - tanA))`
= `((1 - tanA)(1 + tanA + tan^2A))/(tanA(1 - tanA))`
= `(1 + tanA + tan^2A)/tanA`
= cot A + 1 + tan A
Solution 2
L.H.S. = `cotA/(1 - tanA) + tanA/(1 - cotA)`
= `((cosA/sinA))/((1/1 - sinA/cosA)) + ((sinA/cosA))/((1/1 - cosA/sinA))`
= `((cosA/sinA))/(((cosA - sinA)/cosA)) + ((sinA/cosA))/(((sinA - cosA)/sinA))`
= `(cos^2A)/(sinA(cosA - sinA)) + (sin^2A)/(cosA(sinA - cosA))`
= `(cos^2A)/(sinA(cosA - sinA)) - (sin^2A)/(cosA(cosA - sinA))`
= `(cos^3A - sin^3A)/(sinAcosA(cosA - sinA))`
= `(\cancel((cosA - sinA))(cos^2A + cosAsinA + sin^2A))/(sinAcosA\cancel((cosA - sinA)))`
= `(cos^2A + cosA sinA + sin^2A)/(sinAcosA)`
= `(\cancel(cos^2A))/(sinA\cancel(cosA)) + (\cancel(cosAsinA))/(\cancel(sinAcosA)) + (\cancel(sin^2A))/(\cancel(sinA)cosA)`
= cos A + 1 + tan A
= 1 + tan A + cot A
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Choose the correct alternative:
sec2θ – tan2θ =?
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`