English

Prove the following identities: cotA1-tanA+tanA1-cotA=1+tanA+cotA - Mathematics

Advertisements
Advertisements

Question

Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`

Sum

Solution 1

`cotA/(1 - tanA) + tanA/(1 - cotA)`

= `(1/tanA)/(1 - tanA) + tanA/(1 - 1/tanA)`

= `1/(tanA(1 - tanA)) + tan^2A/(tanA - 1)`

= `(1 - tan^3A)/(tanA(1 - tanA))`

= `((1 - tanA)(1 + tanA + tan^2A))/(tanA(1 - tanA))`

= `(1 + tanA + tan^2A)/tanA`

= cot A + 1 + tan A

shaalaa.com

Solution 2

L.H.S. = `cotA/(1 - tanA) + tanA/(1 - cotA)`

= `((cosA/sinA))/((1/1 - sinA/cosA)) + ((sinA/cosA))/((1/1 - cosA/sinA))`

= `((cosA/sinA))/(((cosA - sinA)/cosA)) + ((sinA/cosA))/(((sinA - cosA)/sinA))`

= `(cos^2A)/(sinA(cosA - sinA)) + (sin^2A)/(cosA(sinA - cosA))`

= `(cos^2A)/(sinA(cosA - sinA)) - (sin^2A)/(cosA(cosA - sinA))`

= `(cos^3A - sin^3A)/(sinAcosA(cosA - sinA))`

= `(\cancel((cosA - sinA))(cos^2A + cosAsinA + sin^2A))/(sinAcosA\cancel((cosA - sinA)))`

= `(cos^2A + cosA sinA + sin^2A)/(sinAcosA)`

= `(\cancel(cos^2A))/(sinA\cancel(cosA)) + (\cancel(cosAsinA))/(\cancel(sinAcosA)) + (\cancel(sin^2A))/(\cancel(sinA)cosA)`

= cos A + 1 + tan A

= 1 + tan A + cot A

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometrical Identities - Exercise 21 (E) [Page 332]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 21 Trigonometrical Identities
Exercise 21 (E) | Q 1.05 | Page 332
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×