Advertisements
Advertisements
Question
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Solution
RHS = `(2 cos^3 theta - cos theta) tan theta`
=`(2 cos^2 theta - 1) cos theta xx sin theta/ cos theta`
=`[2(1- sin^2 theta ) -1] sin theta`
=` (2-2 sin^2 theta -1 ) sin theta`
=` (1-2 sin^2 theta ) sin theta`
=`( sin theta -2 sin^3 theta )`
=LHS
APPEARS IN
RELATED QUESTIONS
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`(1 + cot^2 theta ) sin^2 theta =1`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Prove that sec2θ – cos2θ = tan2θ + sin2θ
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`