Advertisements
Advertisements
Question
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Solution
L.H.S. = `(sinAtanA)/(1 - cosA)`
= `(sinAtanA)/(1 - cosA) xx (1 + cosA)/(1 + cosA)`
= `(sinAtanA(1 + cosA))/(1 - cos^2A)`
= `(sinA sinA/cosA(1 + cosA))/sin^2A`
= `(1 + cosA)/cosA`
= `1/cosA + cosA/cosA`
= sec A + 1
= 1 + sec A = R.H.S.
APPEARS IN
RELATED QUESTIONS
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
If sec θ + tan θ = x, then sec θ =
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.