Advertisements
Advertisements
Question
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Solution
LHS = `(sec θ - 1)/(sec θ + 1)`
= `(1/cos θ - 1)/(1/cos θ + 1)`
= `(1 - cos θ)/(1 + cos θ)`
= `(1 - cos θ xx ( 1 + cos θ))/(1 + cos θ xx (1 + cos θ))`
= `(1 - cos^2 θ)/(1 + cos θ)^2`
= `(sin^2 θ)/(1 + cos θ)^2`
= `((sin θ)/(1 + cos θ ))^2`
= RHS
APPEARS IN
RELATED QUESTIONS
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to