Advertisements
Advertisements
प्रश्न
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
उत्तर
LHS = `(sec θ - 1)/(sec θ + 1)`
= `(1/cos θ - 1)/(1/cos θ + 1)`
= `(1 - cos θ)/(1 + cos θ)`
= `(1 - cos θ xx ( 1 + cos θ))/(1 + cos θ xx (1 + cos θ))`
= `(1 - cos^2 θ)/(1 + cos θ)^2`
= `(sin^2 θ)/(1 + cos θ)^2`
= `((sin θ)/(1 + cos θ ))^2`
= RHS
APPEARS IN
संबंधित प्रश्न
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1