Advertisements
Advertisements
प्रश्न
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
उत्तर
LHS = `( sin θ tan θ)/(1 - cos θ)`
= `(sin θ. (sin θ)/(cos θ))/(1 - cos θ)`
= `sin^2 θ/(cos θ( 1 - cos θ))`
= `((1 - cos θ)(1 + cos θ))/(cos θ(1 - cos θ))`
= `(1 + cos θ)/(cos θ) = 1/(cos θ) + cos θ/cos θ`
= sec θ + 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
The value of sin2 29° + sin2 61° is
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`