Advertisements
Advertisements
प्रश्न
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
उत्तर
LHS = sin θ sin( 90° - θ) - cos θ cos( 90° - θ)
= sin θ . cos θ - cos θ . sin θ
= 0
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
What is the value of (1 − cos2 θ) cosec2 θ?
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B