Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
उत्तर
We know that `sin^2 theta + cos^2 theta = 1`
So
`tan^2 theta cos^2 theta = (tan theta xx cos theta)^2`
`= (sin theta/cos theta xx cos theta)^2`
`= sin^2 theta`
`= 1 - cos^2 theta`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
If tanθ `= 3/4` then find the value of secθ.
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Choose the correct alternative:
Which is not correct formula?
If cos A + cos2A = 1, then sin2A + sin4 A = ?
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.