Advertisements
Advertisements
प्रश्न
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
उत्तर
LHS = ( 1 + tan A)2 + (1 - tan A)2
= 1 + 2 tan A + tan2A + 1 - 2 tan A + tan2A
= 2( 1 + tan2A)
= 2 sec2A
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`