Advertisements
Advertisements
प्रश्न
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
उत्तर
we get :
`x^2 = (acosθ)^2 = a^2cos^2θ`
`y^2 = (bcotθ)^2 = b^2cot^2θ`
LHS = `a^2/x^2 - b^2/y^2 = a^2/(a^2cos^2θ) - b^2/(b^2 cot^2θ) = 1/(cos^2θ) - 1/cot^2θ`
⇒ LHS = `sec^2θ - tan^2θ = 1 ["Since" 1 + tan^2θ = sec^2θ]`
APPEARS IN
संबंधित प्रश्न
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If sin θ = `1/2`, then find the value of θ.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.