Advertisements
Advertisements
प्रश्न
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
उत्तर
LHS = 1+`(tan^2 theta)/((1+ sec theta))`
=` 1+ ((sec^2 theta-1))/((sec theta + 1))`
=`1+((sec theta +1)(sec theta-1))/((sec theta +1))`
=`1+ (sec theta-1)`
=`sec theta`
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
If `sec theta = x ,"write the value of tan" theta`.
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Choose the correct alternative:
1 + cot2θ = ?
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`