Advertisements
Advertisements
प्रश्न
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
उत्तर
LHS = `((1+ tan^2 theta) cot theta)/ (cosec^2 theta) `
=` (sec^2 theta cot theta)/(cosec^2 theta )`
=`(1/cos^2thetaxxcos theta/sin theta)/(1/sin^2 theta)`
=`1/(cos theta sin theta) xx sin^2 theta`
=`sintheta/costheta`
=` tan theta`
=RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
If sec θ = `25/7`, then find the value of tan θ.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If x = a tan θ and y = b sec θ then
Prove that sin4A – cos4A = 1 – 2cos2A
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
If sin A = `1/2`, then the value of sec A is ______.
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ