Advertisements
Advertisements
प्रश्न
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
विकल्प
−1
1
0
None of these
उत्तर
Given:
`sin θ+sin^2θ=1`
`⇒ 1-sin^2θ= sin θ`
Now,
`cos^2θ+cos^4θ`
`= cos^2 θ+cos^2θcos^2θ`
=` cos^2θ+(1-sin^2θ)(1-sin^2θ)`
`=cos^2θ+sinθ sinθ`
`=cos^2 θ+sin^2θ`
`=1`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A