हिंदी

If Sin θ + Sin2 θ = 1, Then Cos2 θ + Cos4 θ = - Mathematics

Advertisements
Advertisements

प्रश्न

If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = 

विकल्प

  • −1

  • 1

  • None of these

MCQ

उत्तर

Given: 

`sin θ+sin^2θ=1` 

`⇒ 1-sin^2θ= sin θ`

Now,

`cos^2θ+cos^4θ`  

`= cos^2 θ+cos^2θcos^2θ`

=` cos^2θ+(1-sin^2θ)(1-sin^2θ)`

`=cos^2θ+sinθ sinθ`

`=cos^2 θ+sin^2θ`

`=1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 20 | पृष्ठ ५८

संबंधित प्रश्न

Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


Prove that:

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identity : 

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`


Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×