Advertisements
Advertisements
प्रश्न
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
विकल्प
\[x^2 + y^2 + z^2 = r^2\]
\[x^2 + y^2 - z^2 = r^2\]
\[x^2 - y^2 + z^2 = r^2\]
\[z^2 + y^2 - x^2 = r^2\]
उत्तर
Given:
`x= r sin θ cos Φ,`
`y=r sinθ sinΦ `
`z= r cos θ`
Squaring and adding these equations, we get
`x^2+y^2+z^2=(r sinθ cosΦ )^2+(r sin θ sinΦ )^2+(r cos θ)^2`
`= x^2+y^2+z^2=r^2 sin^2θ cos^2Φ+r^2 sin^2θsin^2Φ+r^2 cos^2θ `
`=x^2+y^2+z^2=(r^2 sin^2θ cos^2Φ+r^2 sin^2 sin^2Φ)+r^2 cos^2Φ`
`=x^2+y^2+z^2=r^2sin^2θ(cos^2Φ+sin^2Φ)+r^2 cos^2Φ`
`=x^2+y^2+z^2=r^2 sin^2θ(1)+r^2 cos^2θ`
`=x^2+y^2+z^2=r^2 sin^2θ+r^2 cos^2θ`
`=x^2+y^2+z^2=r^2(sin^2θ+cos^2θ)`
`=x^2+y^2+z^2=r^2(1)`
`=x^2+y^2+z^2=r^2`
APPEARS IN
संबंधित प्रश्न
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`(sec^2 theta-1) cot ^2 theta=1`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Choose the correct alternative:
cos θ. sec θ = ?
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.