हिंदी

If X = R Sin θ Cos ϕ, Y = R Sin θ Sin ϕ and Z = R Cos θ, Then - Mathematics

Advertisements
Advertisements

प्रश्न

If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then 

विकल्प

  • \[x^2 + y^2 + z^2 = r^2\]

  • \[x^2 + y^2 - z^2 = r^2\]

  • \[x^2 - y^2 + z^2 = r^2\]

  • \[z^2 + y^2 - x^2 = r^2\] 

MCQ

उत्तर

Given: 

`x= r sin θ  cos Φ,` 

`y=r  sinθ  sinΦ `

`z= r cos θ` 

Squaring and adding these equations, we get

`x^2+y^2+z^2=(r sinθ cosΦ )^2+(r sin θ sinΦ )^2+(r cos θ)^2` 

`= x^2+y^2+z^2=r^2 sin^2θ cos^2Φ+r^2 sin^2θsin^2Φ+r^2 cos^2θ ` 

`=x^2+y^2+z^2=(r^2 sin^2θ cos^2Φ+r^2 sin^2 sin^2Φ)+r^2 cos^2Φ`

`=x^2+y^2+z^2=r^2sin^2θ(cos^2Φ+sin^2Φ)+r^2 cos^2Φ`

`=x^2+y^2+z^2=r^2 sin^2θ(1)+r^2 cos^2θ`

`=x^2+y^2+z^2=r^2 sin^2θ+r^2 cos^2θ`

`=x^2+y^2+z^2=r^2(sin^2θ+cos^2θ)`

`=x^2+y^2+z^2=r^2(1)`

`=x^2+y^2+z^2=r^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 19 | पृष्ठ ५७

संबंधित प्रश्न

Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


`(sec^2 theta-1) cot ^2 theta=1`


`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`


Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ


9 sec2 A − 9 tan2 A is equal to


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.


a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to


Choose the correct alternative:

cos θ. sec θ = ?


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity:

L.H.S = `square`

= `cos^2theta xx square    .....[1 + tan^2theta = square]`

= `(cos theta xx square)^2`

= 12

= 1

= R.H.S


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×